ω Photoproduction at the CBELSA/TAPS Experiment

Andrew Wilson For the CBELSA/TAPS Collaboration

Florida State University

May 17-20, 2011 NStar 2011 Jefferson Lab Newport News, VA

Andrew Wilson

Omega Photoproduction

Outline

2 CBELSA/TAPS Experimental Setup

- Reconstruction
- Differential Cross Sections
- 4 CLAS/CBELSA η Disagreement

< (□) < (□)

Outline

- CBELSA/TAPS Experimental Setup
- 3 $\gamma p \rightarrow p \omega$ • Reconstruction • Differential Cross Sections
- 4 CLAS/CBELSA η Disagreement
- Summary and Outlook

・ 戸 ・ ・ ヨ ・ ・

 $\exists \mapsto$

- Find resonances that couple to ω mesons.
- Improve on the forward angle scattering cross sections.
- Help resolve the CLAS/CBELSA η photoproduction discrepancy.

・ロト ・聞 ト ・ ヨト ・ ヨトー

э

Motivation CBELSA/TAPS Experimental Setup $\gamma p \rightarrow p \omega$

Motivations for Studying ω Photoproduction

- Find resonances that couple to ω mesons.
- Improve on the forward angle scattering cross sections.
- Help resolve the CLAS/CBELSA η photoproduction discrepancy.

The PDG(2010) currently lists 4 N^* resonances that couple to the ω meson.

N(1710)*** N(1900)** N(2080)** N(2190)****

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ ト

- Find resonances that couple to ω mesons.
- Improve on the forward angle scattering cross sections.
- Help resolve the CLAS/CBELSA η photoproduction discrepancy.

・ロット (雪) (日) (日)

э

CLAS ω Photoproduction Cross Section

M. Williams et al. Phys.Rev.C80:065209,2009.

spin resonances.

Andrew Wilson **Omega Photoproduction**

- Find resonances that couple to ω mesons.
- Improve on the forward angle scattering cross sections.
- Help resolve the CLAS/CBELSA η photoproduction discrepancy.

< □ > < 同 > < 回 > <

Andrew Wilson

Single η Photoproduction Cross Section Ratio

- Find resonances that couple to ω mesons.
- Improve on the forward angle scattering cross sections.
- Help resolve the CLAS/CBELSA η photoproduction discrepancy.

At CBELSA/TAPS, the same photon flux is used for reactions π^0, η and ω . Can use π^0 and ω cross sections study differences in normalization.

.⊒

Outline

Motivation

2 CBELSA/TAPS Experimental Setup

$\gamma p \rightarrow p_{0}$

- Reconstruction
- Differential Cross Sections
- 4 CLAS/CBELSA η Disagreement
- 5 Summary and Outlook

 $\exists \mapsto$

< /₽ > < E >

CBELSA/TAPS Experiment (2002)

- Located in Bonn, Germany at the ELSA facility.
- Nearly a 4π detector optimized to detect photons.
- Has scintillators to detect the presence of charged particles.
- CB (1290 Cs/ Crystals) TAPS (528 BaF₂ Crystals)

(日)

Outline

CBELSA/TAPS Experimental Setup

- Reconstruction
- Differential Cross Sections
- 4 CLAS/CBELSA η Disagreement
- 5 Summary and Outlook

A (1) > A (2) > A

 $\exists \rightarrow$

< **同 ト イ ヨ ト イ**

 $\exists \mapsto$

Outline

CBELSA/TAPS Experimental Setup

- Differential Cross Sections
- 4 CLAS/CBELSA η Disagreement
- Summary and Outlook

< 🗇 🕨 < 🖻 🕨

Data Set

- Data taken October 2002 November 2002
- Unpolarized photon beam up to 3.2 GeV
- Unpolarized liquid hydrogen target

Kinematic Cuts

$$p\omega \rightarrow p(\pi^0\gamma) \rightarrow p(\gamma\gamma)\gamma \rightarrow 3/4$$
 particles

- Transverse momentum cut $\pm 30 \deg$
- timing cuts (relative to the timing calibration)
 - Uncharged time \pm 3 ns
 - Charged time {-5,+15} ns

Kinematic Fitting

Motivation CBELSA/TAPS Experimental Setup $\gamma \rho \rightarrow \rho \omega$ (Reconstruction Differential Cross Sections

Qvalue Background Subtraction

Idea: Weight each event with its probability to be a true $p\omega$ event.

(M. Williams, M. Bellis, C.A. Meyer, JINST 4: P10003, 2009.)

Events in $p\omega$ Phase Space $(E_{\gamma}, \cos \theta_p^{cms})$

Motivation CBELSA/TAPS Experimental Setup $\gamma p \rightarrow p\omega$ (Reconstruction Differential Cross Sections

Qvalue Background Subtraction

Idea: Weight each event with its probability to be a true $p\omega$ event.

Andrew Wilson Omega Photoproduction

Motivation CBELSA/TAPS Experimental Setup $\gamma \rho \rightarrow \rho \omega$ (Reconstruction Differential Cross Sections

Qvalue Background Subtraction

Idea: Weight each event with its probability to be a true $p\omega$ event.

Nearest Neighbor Events

Motivation CBELSA/TAPS Experimental Setup $\gamma \rho \rightarrow \rho \omega$ (Reconstruction Differential Cross Sections

Qvalue Background Subtraction

Idea: Weight each event with its probability to be a true $p\omega$ event.

Plot and Fit of Nearest Neighbor Events

Voigt function (peak) with 2nd degree chebychev polynomial (background) Unbinned maximum likelyhood fit Motivation CBELSA/TAPS Experimental Setup $\gamma \rho \rightarrow \rho \omega$ (Reconstruction Differential Cross Sections)

Qvalue Background Subtraction

Idea: Weight each event with its probability to be a true $p\omega$ event.

probability fraction (Qvalue) = $\frac{s}{s+b}$

Repeat for each event

Advantage: Only have to fit once to produce different distributions of the data.

Disadvantage: Huge amounts of processing time. (one fit per event in analysis)

< /₽ > < E > .

Outline

CBELSA/TAPS Experimental Setup

- Differential Cross Sections
- 4 CLAS/CBELSA η Disagreement
- 5 Summary and Outlook

< **同 ト イ ヨ ト イ**

 $\exists \mapsto$

ω Photoproduction Differential Cross Sections

Andrew Wilson

Omega Photoproduction

ω Photoproduction Differential Cross Sections

Andrew Wilson Omega Photoproduction

ω Photoproduction Differential Cross Sections

Outline

Motivation

2 CBELSA/TAPS Experimental Setup

3 $\gamma p \rightarrow p\omega$ • Reconstruction • Differential Cross Sector

- Differential Cross Sections
- 4 CLAS/CBELSA η Disagreement

5 Summary and Outlook

< // ▶ < □ ▶

• π^0 Photoproduction

• ω Photoproduction

• η Photoproduction

Andrew Wilson Omega Photoproduction

< 回 > < 回 > < 回 >

N. Sparks Parallel session II-A (under collaboration review)

Andrew Wilson Omega Photoproduction

• π^0 Photoproduction

• ω Photoproduction

• η Photoproduction

(日)

∍

Andrew Wilson Omega Photoproduction

э

- π^0 Photoproduction
- ω Photoproduction
- η Photoproduction

(日)

∍

Andrew Wilson Omega Photoproduction

- π^0 Photoproduction
- ω Photoproduction
- η Photoproduction

- Could be normalization.
- The η photoproduction discrepancy is present above 1.8 GeV photon energy and occurs at all angles.
- Corresponds to about a factor of ${\sim}2$ difference at 2.5 GeV photon energy.

 $\exists \mapsto$

< /₽ > < E > .

Outline

Motivation

2 CBELSA/TAPS Experimental Setup

3 γp → pω ● Reconstruction ● Differential Cross Sections

- 4 CLAS/CBELSA η Disagreement

 $\exists \mapsto$

< /₽ > < E > .

Summary

- Showed the reconstruction and differential cross sections for ω photoproduction.
- Analyzed the CBELSA/CLAS η differential cross section disagreement.

< ロ > < 同 > < 回 > < 回 >

Outlook

- Finalize the ω photoproduction analysis.
- Continue with the analysis of $\pi^0 \omega$ photoproduction.
- Continue work on a phenominological model to describe ω and $\pi^0 \omega$ photoproduction.

 $\pi^0 \omega$ Analysis: $\pi^0 \gamma$ Invariant Mass

